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ABSTRACT

We describe an approach to 3D multimodal interaction in im-
mersive augmented and virtual reality environments that accounts
for the uncertain nature of the information sources. The resulting
multimodal system fuses symbolic and statistical information
from a set of 3D gesture, spoken language, and referential agents.
The referential agents employ visible or invisible volumes that
can be attached to 3D trackers in the environment, and which use
a time-stamped history of the objects that intersect them to derive
statistics for ranking potential referents. We discuss the means by
which the system supports mutual disambiguation of these mo-
dalities and information sources, and show through a user study
how mutual disambiguation accounts for over 45% of the success-
ful 3D multimodal interpretations. An accompanying video dem-
onstrates the system in action.
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Multiagent systems; 1.3.7 (Three-Dimensional Graphics and Real-
ism): Virtual reality
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1. INTRODUCTION

Techniques for interacting in 3D worlds are usually derived
from the direct manipulation metaphor—in order to perform an
operation on something, you have to “touch” it. This style of in-
teraction works well when the objects to be manipulated are
known and at hand and the means for selecting objects and other
actions are relatively straightforward. Unfortunately, 3D interac-
tion often breaks all of these rules—for example, the objects of
interest may be unknown or at a distance. To cope with these
problems, some researchers have taken the direct manipulation
style of interaction to extremes, creating devices with many but-
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tons and modes [8], arbitrarily stretchable “arms” [25], and 3D
menus [18]. However, there may be far more possible actions that
can be performed on objects than such GUIs can realistically pro-
vide. We argue that most prior approaches have placed too much
functionality on too impoverished a communications channel (3D
arm/hand motions), and that by incorporating multimodal interac-
tion, the burden of various interactive functions can be off-loaded
to appropriate modalities, such as speech and gesture, in a syner-
gistic fashion. In particular, by incorporating speech into the inter-
face, the user could describe unseen/unknown objects and loca-
tions or invoke functions, while her hands and eyes may be en-
gaged in some other task.

However, unlike direct manipulation interfaces, multimodal in-
terface architectures must cope first and foremost with uncer-
tainty. Recognizers return a set of classification hypotheses, each
of which is assigned a score, such as a posterior probability.
Moreover, language is ambiguous, and thus even a single cor-
rectly recognized utterance can lead to multiple hypotheses.
Likewise, trackers have errors, gestures are uncertain, their mean-
ings are ambiguous, and a correct gesture (e.g., selection) can
have multiple interpretations (e.g., what is being selected). Given
all this uncertainty, it is perhaps surprising that few, if any, mul-
timodal systems that support speech and 3D gestures are able to
deal directly with that uncertainty.

To address these issues, we present an architecture for 3D mul-
timodal interaction in virtual reality (VR) and augmented reality
(AR), and show how it can reduce errors by fusing symbolic and
statistical information derived from speech, gesture, and the envi-
ronment. We begin by describing related work in Section 2. Then,
in Section 3, we introduce an application scenario that we are
exploring. We describe the architecture itself in Section 4, the
results of our study in Section 5, with discussion in Section 6. We
draw our conclusions and present future work in Section 7.

2. RELATED WORK

Multimodal 3D interaction that includes speech dates back at
least to Bolt’s pioneering Put-That-There system [2], in which
speech was integrated with 3D magnetic tracking of a user’s arm
in order to manipulate a 2D world. Motivated by Bolt’s landmark
work, numerous researchers have investigated multimodal 3D
interaction for 2D worlds. Koons et al. [13] present a system that
tracks 3D hand-based pointing gestures, speech, and gaze, and
discuss its extension to other kinds of 3D gestures. The system
copes with linguistic and referential ambiguity, but not erroneous

* Work was conducted at Pacific Northwest National Laboratory, oper-
ated by Battelle for the U.S. Department of Energy. Dr. McGee is now
an employee of Natural Interaction Systems, 503-293-8414,
dmcgee@naturalinteraction.com.



recognizer inputs. Lucente et al. [19] describe a system using a
speech recognizer and a vision-based hand and body tracker that
enables a user to manipulate large objects on a 2D display. Be-
cause of the size of the objects, it does not appear that reference
resolution or uncertainty was of particular concern, nor was any
error correction capability discussed. Similarly, no mention of
coping with uncertainty was mentioned by Poddar et al. [24], who
discuss a sophisticated system that understands speech and natural
3D gesture in a 2D environment in which the speech and gesture
of cable television weather channel narrators were analyzed as the
narrators described the movement of weather fronts across a map.

Many initial steps were taken that motivated building immer-
sive multimodal systems [3, 28]. More recently, Duncan et al. (in
[23]) present a multimodal 3D virtual aircraft maintenance assis-
tant that includes an avatar driven by the user’s tracked limbs,
gesture recognition (seven CyberGlove-based gestures), spoken
natural language input, and semantic fusion of temporally co-
occurring input modes. However, the handling of uncertainty is
not discussed. The usability of both LaViola’s [17] multimodal
3D system, in which tools are created at the 3D location where a
user’s virtual hand is located, and Krum et al.’s [14] multimodal
VR system, in which 2D finger gestures and speech are used to
support 3D navigation, was reportedly undermined by speech
recognition errors, because these systems also lacked error han-
dling capabilities.

Three works are most comparable to ours. Latoschik [16] de-
veloped a 3D multimodal VR system based on augmented transi-
tion networks, which merges speech and gesture. However, nei-
ther the handling of recognition errors nor the possibility of mu-
tual disambiguation (cf. 5.3 below) is mentioned. The 2D multi-
modal QuickSet architecture [4] was integrated into the Naval
Research Laboratory’s Dragon 3D VR system [5] to create a mul-
timodal system that employs a 3D gesture device to create 2D
“digital ink” projected onto the earth’s surface in a 3D topog-
raphical scene. This system inherits the advantages of earlier 2D-
only Quickset implementations; namely, it has been shown to
offer mutual disambiguation of modalities [20, 22], resulting in
error rate reductions of 19-40% [22]. Recently, Wilson and
Shafer [29] have described a new six-degree-of-freedom (6DOF)
tracked device (the X-Wand) that supports 3D gestures (pointing
and rotating about any of the axes), which are coupled with simple
speech recognition to manipulate objects in a living room. The
system incorporates Bayesian networks for fusing interpretations,
so in principle, it should be capable of mutual disambiguation.
User testing was conducted for pointing accuracy, but not for the
entire multimodal system.

Thus, few 3D multimodal projects consider the issues involved
in the management of uncertainty across modalities. In this paper,
we discuss how an architecture similar to that used in QuickSet
for 2D gestures and digital ink in the Dragon environment can be
extended to handle 3D gestures directly, and to take uncertainty
into account in immersive 3D VR and AR environments.

3. APPLICATION SCENARIO

We illustrate the kinds of interactions that we address with an
example of manipulating a virtual object in a simple interior de-
sign scenario. The user is standing in the room, with four 6DOF
trackers attached to the right hand, right wrist, right upper arm,
and head, as illustrated in Figure 1.

The system is configured to use either tethered magnetic sen-
sors (Figure 1a) or hybrid sensors (Figure 1b). The user also wears
a head-worn display (opaque for virtual reality, see-through for

augmented reality). The user’s view is shown in the plasma screen
on the left of Figure l1a. He views a virtual surrounding environ-
ment in VR or a combination of real and virtual objects in AR.

@ ®)
Figure 1. Interior design scenario: (a) turning a monitor
in VR; (b) making a chair blue in AR.

4. SYSTEM ARCHITECTURE

The multimodal recognition architecture that we have devel-
oped consists of six components: an agent communication infra-
structure, an interactive 3D environment (and its 3D proxy agent),
a 3D reference resolution agent, a set of unimodal recognizer
agents (one for each separate modality: speech and 3D gesture), a
natural language parser, and a multimodal integrator agent (with
embedded 3D gesture and gaze parsers). Their interactions are
shown in Figure 3. The agent communication infrastructure [15],
implemented in Prolog and Java, is the underlying distributed
communication system that connects all other components, sup-
porting both facilitated communication (through a blackboard)
and direct peer-to-peer communication. The interactive 3D envi-
ronment is responsible for capturing raw user interactions, han-
dling virtual world state changes, visualizing the interaction as VR
or AR, and performing geometric processing needed to determine
candidate referents for manipulation; it communicates with the
rest of the components through its 3D proxy agent. The 3D refer-
ence resolution agent maintains the relationship between sensors
and body positions, and, based on the time stamps of raw 3D ges-
tural and speech recognitions, requests (from the 3D proxy agent)
the list of objects that were captured by the appropriate tracker’s
regions of interest. In Section 4.1.1 below, we discuss this in more
detail.

4.1 Interactive 3D Environment
4.1.1 Regions of Interest

Figure 2. VR avatar controlled by tracked user,
showing attached regions of interest.

An important task of the interactive 3D environment compo-
nent is to find geometric correlates for the semantic meaning of
deictic terms, such as “that,” “here,” and “there,” as well as to
facilitate selection of objects. We accomplish this through regions
of interest that we call SenseShapes—volumes controlled by the



User with four 6DOF trackers attached to the head,
right upper arm, right lower arm and right hand
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Figure 3. Multimodal interaction architecture.

user as she interacts with the environment, and which support sta-
tistical calculations about the objects they intersect. SenseShapes
were developed in a test-bed that uses speech, head tracking, and
glove-based finger tracking, without mutual disambiguation [21].
Our current implementation includes four primitives: cuboids, cyl-
inders, cones, and spheres.

For example, Figure 2 shows two cones emanating from the
user’s eyes to approximate the field of view, a sphere around the
user’s hand to represent a volume that would encompass objects
that are nearby and within reach, and another cone emanating from
the user’s hand, representing a “pointing volume.” Multiple Sense-
Shapes can be added to sensors, depending upon the application
under development, adjusted in real-time to support various domain
specific sensing needs, and made visible or invisible to the user as
appropriate.

The SenseShapes are tested at each frame for intersections with
objects in the environment, and this information is stored in the
environment’s event history. The event history uses an in-memory
database, and supports complex queries through SQL. The 3D ref-
erence resolution agent queries the event history for objects that
have been contained within a SenseShape at any point during a
specified time period. The queries return the objects along with
rankings that are used by the multimodal integrator to facilitate
mutual disambiguation.

4.1.2 Object Rankings

We currently provide four different types of SenseShape—based
rankings for an object, aggregated over a specified time period:
time, stability, visibility, and center-proximity. The time ranking of
an object is derived from the fraction of time the object spends in a
region over a specified time period: the more time the object is in
the region, the higher the ranking.

The stability ranking of an object expresses the stability of the
object’s presence in the region relative to other objects. We cur-
rently calculate this based on the number of times an object enters

and exits the region during the time period. The most stable object
possible never leaves the region, and the more entries and exits an
object has, the lower its stability ranking.

The visibility and center-proximity rankings of an object reflect
its visibility relative to selected SenseShapes. We compute the
visibility of a conical region by rendering into an off-screen object
buffer [1] a low-resolution version of the scene from a center of
projection at the cone’s apex, cropped to the cone’s cross-section at
a specific distance from the user. Each object is rendered with a
unique color, allowing its pixels to be identified in the frame solely
by their color. We currently generate two object buffers, one for an
eye cone and one for a hand cone. We calculate three rankings for
each object relative to a buffer. The visibility ranking orders ob-
jects by the fraction of the buffer that the object covers. The two
center-proximity rankings order objects by how close the object’s
closest pixel is to the buffer’s center, and by how close the object’s
pixels are on average from the buffer’s center.

Included with the object rankings are the absolute time the ob-
ject spent in the region and the number of times the object entered
and exited the region. These values allow the multimodal integrator
to classify the objects through a joint interpretation of the rankings
and the application of appropriate thresholds.

4.2 Unimodal Recognition and Parsing

The source of all interaction in our system is the user’s speech
and the tracker data that represents her motion. These unimodal
data streams are processed independently and in parallel, and then
fused in the multimodal integrator agent.

4.2.1 Spoken Natural Language

Our speech agent uses an off-the-shelf recognition engine—the
Microsoft Speech API 4-compliant Dragon Naturally Speaking 6.
Our prototype system has a 151 word vocabulary and uses a con-
text-free grammar recognition scheme. Results from the speech
recognition engine are passed to the natural language parser as a



list of probability-ranked, time-stamped text strings. The parser
interprets raw text strings such as, “Move that couch there,” gener-
ating a potentially ambiguous set of meaning representations em-
bodied in typed feature structures.

4.2.2 3D Gesture

Our 3D hand-arm gesture recognition agent receives and ana-
lyzes tracker data and sends messages to the 3D reference resolu-
tion agent whenever supported 3D gestures are encountered in the
tracker data stream (see Section 4.4 for detail). We consider the
tracker data stream for a particular sensor to be in a stationary state
whenever the sensor’s reports do not vary over time by more than
an offset. The recognizer determines explicit start and end points
by detecting stationary states without the need for specific user-
defined positions or trigger mechanisms for locating start/end ges-
ture points.

Recognition is based on a model of the body for which we track
human movements and a set of rules for those movements. These
rules were derived from an evaluation of characteristic patterns we
identified after analyzing sensor profiles of the movements
underlying the various gestures [7].

The system recognizes four 3D gestures, plus head
gaze/direction (which we refer to as a look). The 3D gestures are:

e Point: a stationary wrist state, with un-bent arm (i.e., a relative
angle between the directions of the wrist and upper arm sen-
sors below a threshold of divergence), and convergence of
looking and pointing directions (i.e., a relative angle between
the directions of the wrist and head sensors below a threshold
of divergence).

e Push: a point with hand up-down waving motion relative to
the stationary wrist position.

e Twist: a point with hand palm-down/palm-up movement, with
wrist and hand sensors maintaining a below-threshold relative
angular difference.

e Rotate: a point with hand side-to-side motion relative to the
stationary wrist position.

A rule-based analysis of pushing, twisting and rotating gestures
can be given using the quaternion components provided by the
sensor. Over the duration of any wrist stationary period, threshold-
ing of the relative angular and positional differences—both over
time and over the sensors relative to each other—moves the 3D
gesture recognizer from state to state through the various 3D ges-
tures listed above. Movement into a given 3D-gesture-type’s state
increments a counter associated with that state. At the end of the
wrist stationary state (or after a specified time-out period) a
weighted average of each 3D-gesture-type’s count over the dura-
tion provides an n-best list of 3D gesture recognition probabilities.

4.2.3 Looking

The head sensor implicitly defines the gaze direction by estimat-
ing where a person is looking based solely on her head direction.
This is a plausible simplification we have used to determine the
focus of attention of the user without having to perform eye gaze
tracking [26]. The details of /ook event generation are described
below in Section 4.4.

4.3  Multimodal Integration

The job of the multimodal integrator is to find the highest scor-
ing multimodal interpretation, given a set of n-best lists from each
of the individual input recognizers. The basic principle is that of
typed feature structure unification, which is derived from term
unification in logic programming languages. Here, using multimo-
dal grammar rules in a generalized chart parser [10, 11], unification

of constituents rules out inconsistent information, while fusing
redundant and complementary information through binding of logi-
cal variables that are values of “matching” attributes. The matching
process also depends on a type hierarchy and a set of spatio-
temporal or other constraints. The set of multimodal grammar rules
specifies, for a given task, which of these speech and gesture inter-
pretations unify to produce a command. For example, a rule that
unifies a pointing gesture interpretation with a spoken language
interpretation might specify that a 3D pointing gesture selecting an
office object could be unified with speech referring to that same
type of office object.

4.4 Integration Architecture

As shown in Figure 3, speech and gesture signals are recognized
in parallel, and the unimodal recognizers then output lists of speech
and 3D gesture hypotheses. After gesture recognition, the gestures
are routed to the 3D reference resolution (3DRR) agent where,
based on the gesture time stamp common to all list members, a
copy of the n-best list of objects referenced at that time (based on
hand cone tracking) is embedded within each gestural hypothesis.
These hypotheses next are routed to the multimodal integrator.

Simultaneously, when speech is recognized, the n-best list of
output strings, which all share a common start and end time stamp,
flow into the natural language parser (NLP). The NLP maps each
parsable speech string into a typed Feature Structure (FS). The n-
best list of FSs then flows into the multimodal integrator.

Look events are triggered from within the NLP whenever there
is an occurrence of a 3D speech FS of a lexical type whose seman-
tics call for an object color change. The system assumes that during
the time boundaries of this speech FS the user was gazing at the
object(s) to be manipulated, and triggers a message to the 3DRR
agent to create a “gestural” hypothesis of type look 3D, with an
embedded n-best list of the objects referenced at that time (based
on eye cone tracking). The duration of the look event corresponds
to either the duration of the speech or the duration of a configurable
minimum time window centered at the midpoint of the speech (in
case the speech utterance is very short). That gestural hypothesis is,
in turn, routed to the multimodal integrator (MI).

Thus, although the MI receives parsed FSs from the NLP, it re-
ceives only gestural hypotheses with embedded object lists from
the 3DRR agent (eye cone objects with look 3d hypotheses; hand
cone objects with other 3D types). Once received, these gestural
hypotheses are immediately converted into typed FSs, which—as
with speech FSs—are then processed by the MI’s internal chart
parser. In order for unification of a spoken FS and a 3D gestural FS
to occur, certain constraints must be met. Generally these con-
straints are time-based, but in the case of 3D gestural FSs, the first
constraint requires that the embedded object list be filtered by the
object type (e.g., “table”) provided by the speech FS. (This tech-
nique is common in computational linguistics). This process gen-
erates single object FSs of the type specified for the speech/gesture
combination, which are subsequently enrolled in the chart. Cur-
rently, the probabilities of speech, gesture, and object identification
are multiplied to arrive at a probability for their multimodal combi-
nation. Whenever the chart’s agenda empties, the complete edges
present on the chart become the multimodal n-best list, and the top
member of this list is then executed by the system (e.g., the speci-
fied object’s color, position, or orientation is changed).

5. USER TEST

In order to assess the strengths and weaknesses of this architec-
ture, we conducted a small pilot test.



5.1 Subjects

Six unpaid subjects were recruited from colleagues and friends.
Two were non-native speakers of English; one was female.

5.2 Methods
5.2.1 FEquipment

Users wore four tethered Ascension Flock of Birds 6DOF mag-
netic tracker sensors in the following positions: (1) on top of the
head, (2) on the upper arm near the shoulder, (3) on the wrist, and
(4) on the back of the hand. They also wore a wireless microphone
for speech recognition (in open-microphone mode), and wore an
Olympus Eye-Trek FMD-150W head-worn display (in wide-screen
mode), through which they viewed the virtual room in which they
were interacting. They could turn and move about a target position
on the floor one or two steps in each direction, enabling them to
view the entire virtual room around them and to change their vir-
tual position relative to objects in the room. The tests were run on a
Pentium 4 Windows 2000 desktop computer (1.9 GHz, 1 GB
RAM, 64MB DDR NVIDIA GeForce 3 graphics card). The 3D
environment, gesture recognizer, speech recognizer, multi-agent
infrastructure, and parsing agents were all run simultaneously on
this machine. Auxiliary control and logging agents were run on two
separate laptop computers connected by 100 Mbit Ethernet.

The head sensor's local position and orientation were used both
to position the avatar representing the user in the virtual room, and
to approximate gaze tracking. The SenseShape attached to the head
sensor was an invisible cone, while that attached to the hand sensor
was a visible cone, whose cross-sectional diameter was three-fifths
that of the eye cone.

5.2.2 Task

Seven multimodal command templates were employed in the

study. Two were used for color changes:

o Look+speech: Color changes accomplished only by looking at
an object, with speech specifying what change to make. For
example, “Make the table red <looking at part of a scene that
contains a table>"

e Point+speech: Color changes accomplished by pointing at an
object, with speech specifying what change to make. For ex-
ample, “Make that <point to a chair> blue”

Two commands were used for moving objects:

e Speech+2 points: A single speech utterance (e.g., “Put that
there”) combined with two separate point gestures, the first
designating an object to be moved and the second a position
on the floor of the room to which it should be moved.

e Speech+point followed by speech+point: An object designa-
tion speech utterance (e.g., “Move that”) and point gesture,
followed by a pause in the speech recognition and then a posi-
tion-designating spoken utterance (e.g., “over there”) and a
second point at a position on the floor.

Figure 4. Result of, "Flip the monitor," with twist gesture.

The final three were rotational commands. In these, the 3D gesture
designated both the object(s) under reference and the axis of rota-

tion, while speech specified the direction and degree of the speci-
fied rotation, and optionally further specified the object(s) (e.g.,
“that table,” versus the deictic, “that”):

o Twist+speech: Rotation of an object on the horizontal axis
parallel to the twist gesture’s pointing direction (see Figure 4).

® Rotate+speech: Rotation of an object on its vertical axis (e.g.,
“Turn the table <rotating gesture> clockwise”).

e Push+speech: Rotation of an object on the horizontal axis
perpendicular to the push gesture’s pointing direction (e.g.,
“Stand the desk up <push gesture>").

Each user was trained to perform these actions using 16 example
multimodal commands. Training typically took 15 minutes. After
training, users engaged in a test session of 23 multimodal command
tasks, typically taking 25 minutes. They could retry a failed com-
mand up to two additional times before going on to a subsequent
one. During testing they were not coached, although direct
informational questions (e.g., questions about the names of objects)
were answered. With one exception, all objects acted on during
testing had not been acted on during training. The tasks resembled
those one would expect to perform in an interior decorating sce-
nario: moving objects from one location to another, rotating objects
to different orientations, arranging out of order objects, and chang-
ing object colors. The user was told to look at a certain part of the
room, observe an object’s changing state, and then replicate that
change. The room contained 50 objects, categorized into 13 types.
After the study, users filled out a questionnaire that assessed their
opinion about the system’s usability and learnability.

5.3 Measures

The system provided n-best recognition lists for speech, gesture,
gaze, object reference and multimodal interpretation. From these
lists, we computed individual modality and multimodal recognition
rates as a function of (1) all command attempts, and (2) those at-
tempts for which the system produced an output for that modality.
Attempts that did not result in integrations could occur for a variety
of reasons, including lack of speech recognition results (e.g., be-
cause the user was speaking too slowly, rapidly, loudly, softly, or
ungrammatically), incorrectly performed pointing actions (e.g., a
steady state was not reached), and incorrectly performed 3D ges-
tures (e.g., the speed was too slow or the degree of pushing, twist-
ing or rotating was too small).

Given that these were multimodal commands only, if no output
was produced for an individual modality, then no output was gen-
erated for multimodal integration. Therefore, we present the sys-
tem’s performance results in a manner analogous to “re-
call/precision” in the information retrieval and natural language
processing literature. We also measured the overall system re-
sponse time, calculated from the time the user stopped speaking or
gesturing to the time the system provided a graphical response.
Data logging and auxiliary control and display agents did not sig-
nificantly affect the response time.

Finally, the mutual disambiguation (MD) rate [22] was com-
puted over all N scorable commands—those multimodal commands
for which the correct multimodal integration occurred at the top of
the multimodal n-best list."

.
MD —l—i Sign E‘R: ~ RNV
N = 8 C !

! Our definition of “scorable” is a modification of that in [22], in that we are
only interested in those multimodal interpretations with MD that occur on
the top of the multimodal n-best list, rather than anywhere within that list.



The MD rate computes the average over N commands of those
for which the average rank (Ri) of the constituent recognitions (C)
that contribute to the multimodal interpretation is higher than the
rank of the correct multimodal integration on the n-best list (R™),
minus those in which that average is less than Ri™™.2

The parallel coordinate plot [9] in Figure 5 presents MD in
terms of the n-best lists of hypotheses, including rankings (in
square brackets) and probabilities, for each recognizer. A plot
shows MD when the solid line that indicates the system’s chosen
interpretation is not straight. Occasionally, there are instances of
double pull-ups, in which more than one modality was compen-
sated for (i.e., “pulled-up”) by the remaining modalities. For exam-
ple, in Figure 5 the correctly ranked speech at the top of the speech
n-best list “pulls up” both gesture and object hypotheses from
lower down on their n-best lists.
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Figure 5. Parallel coordinate plot showing multiple
hypotheses for each modality.

54 Results

After completing our user test we corrected system errors and
re-scored the data (using a regression scripting mechanism similar
to that described in [12]). These system corrections—which dealt
with an error in the object list iterator, incorrectly normalized score
combinations, and an inadequate end-point mechanism—allowed
us to score 7 additional correct integrations. Results given in Table
1 and below are for the corrected system.

Modality Percent of attempts Functional
producing an Accuracy
n-best list
User Test

Speech 225/267 84.3% 194/225 86.2%
Gesture 222/228 97.4% 168/222 75.7%
Gaze 32/38 84.2% 32/32 100.0%
Gaze Objects 32/38 84.2% 23/32 71.9%
Gesture Objects 221/228 96.9% 115/221 52.0%
Multimodal 172/237 72.6% 140/172 81.4%
Overall Success 140/237 59.1%

Table 1. Recognition results.

Of the 237 multimodal command attempts across the 6 subjects
172 were in fact integrated. Subjects often made additional com-

? Since for this paper, we are only interested in the top-scoring multimodal
interpretation, the last case (“negative MD”) cannot arise. However, for
the sake of consistency with the literature, the formula is left unchanged.

mand attempts (up to three total attempts for each command) when
previous ones failed. The 65 unintegrated commands are analyzed
below in Section 5.4.1. Among the 172 integrated commands, 140
were correct, resulting in an overall 81.4% multimodal success rate.
The 32 integrated, but incorrect commands are also analyzed below
in Section 5.4.1. Of these 140 instances, 65 were correct in virtue
of mutual disambiguation, representing an MD rate of 46.4% of the
successful attempts, and 27.4% of all attempts. Of those 65 in-
stances, 18 (27.7%) were successful in virtue of double pull-ups,
yielding a double pull-up rate of 12.9% for successful commands,
and 7.6% over all attempts. Over all attempts, the system suc-
ceeded 140 times (59.1%).

In terms of the individual modalities, among the 267 spoken
command attempts, 225 (84.3%) produced results from the recog-
nizer, of which 194 (86.2%) were correct at the sentence level, and
157 (69.7%) were verbatim correct. Likewise, of the 228 gestural
attempts, 222 (97.4%) produced results, of which 168 (75.7%)
were correct. However, of the 221 gesture object attempts that pro-
duced a result, 115 (52%) were correct. Finally, the subjects at-
tempted to use speech plus gaze (but not gesture) 38 times, with the
gaze identification agent producing a result 32 times. For those 32
object gaze instances, the top object on the gaze’s n-best list of
identified objects was correct 23 times (71.9%).

Given these baseline recognition rates, functionally correct spo-
ken interpretations were pulled up by MD 13 times (20% of the
MD cases), while gesture and objects were pulled up 22 times
(33.8%) and 42 times (64.6%) respectively. By subtracting these
instances in which MD corrected incorrect interpretations, one can
compute that MD accounted for a relative error rate reduction of
41.9% for functionally correct speech, 40.7% for gesture, and
39.6% for object identification.

5.4.1 Error Analyses

A. Failure to Integrate Errors 65
1. With Some Recall for all Recognizers 30
Poor speech or gesture recognition 14/30  [46.7%| 21.5%
Poor object identification 4/30 13.3%| 6.2%
Procedural errors 10/30  (33.3%]| 15.4%
Unexplained System Errors 2/30 6.7% | 3.1%
2. With Some Failure of Recognition 35
Non-native, accented speech 22/35 162.9%| 33.7%
Out of grammar speech 2/35 57% | 3.1%
Speech disfluency 2/35 57% | 3.1%
Unexplained Speech Recog. Errors 2/35 5.6% | 3.1%
Poor gesture recognition 7/35 20.0%| 10.8%
B. Incorrect Integration Errors 32
Incorrect Object Selection 14/34 43.8%
Procedural errors 9/34 28.1%
System Errors 8/34 25.0%
Poor gesture recognition 1/34 3.1%

Table 2. Error Analyses.

Of the total system failures, 65 were unintegrated attempts (Ta-
ble 2.A). In 30 of these cases (Table 2.A.1) there was some recog-
nition for all input streams. Failure to find an integrated combina-
tion was caused by: poor speech or gesture recognition (14 cases),
poor object identification (4), procedural errors (10), and unex-
plained system errors (2). For the other 35 unintegrated attempts
one or more recognizers had no output (Table 2.A.2). The contrib-



uting factors were speech (28/35) and gesture errors (7/35). For
speech, the factors leading to recognition failure were non-native
accented speech (22), out-of-grammar speech (2), speech disflu-
ency (2), and unexplained failure (2). For gesture failures, the fac-
tors were: too fast, too slow, or ambiguous user motion (6/35), and
a non-intersecting floor location gesture (1/35).

Among the 34 integrated commands that were not correct (Table
2.B), the contributing factors were 14 incorrect object selections
(e.g., pointing through one object towards another, occluding the
target in the off-screen buffer), 9 procedural errors (e.g., out-of-
grammar speech, or wrong command given), 8 system errors, and 1
ambiguous gesture.

The 14 incorrect object selection errors in Table 2.B were in-
stances in which the user was inadvertently gesturing in front of an
object that filled up the hand cone’s off-screen buffer. She was,
however, still looking over that point-occluding object at the sec-
ond object about which she was speaking. Here, the use of speech
and gaze was found to override the semantically incoherent infor-
mation provided by pointing. We can systematically address this
error in the future by using a weighted combination of hand and
eye object lists for all such arm-gestural object selection events.

5.4.2 Response Times

Based on a sample of 20% of the subjects’ successful attempts
(randomly selected), the mean system response time was 1.1 sec-
onds (standard deviation = 0.68), and was not significantly affected
by logging. The average length of user 3D hand/arm gestures was
3.62 seconds (standard deviation = 1.76), with the maximum length
being 7.28 and minimum length being 0.58 seconds.

5.4.3  Subjective Evaluation

From the questionnaires, it was found that the system scored an
average of 3.5 on the usability scale of 1-5 (not usable—extremely
usable), and an average of 3.3 on learnability (not learnable—
extremely learnable). Users were concerned that some of the ges-
tures were difficult to perform, and that the gesture(s) needed to
perform the changes depicted were not obvious.

6. DISCUSSION

The results are presented in terms of functionally correct results,
rather than based on verbatim speech recognition, because the rec-
ognizer is built to map utterances that are slightly disfluent or out
of grammar into the closest grammatically correct utterance, a phe-
nomenon that occurred in 14.7% of the successful commands. A
second reason to concentrate on functional accuracy is that this is
what the user experiences.

Whereas Oviatt [22] reports that 12.5% of multimodal 2D
pen/voice interactions were successful because of MD, 46.4% of
the interactions in this 3D user test succeeded because of MD.
Oviatt also reported very few cases of double pull-ups, while such
cases were relatively common here (12.9% of successful com-
mands). Given that object identification was correct only 52% of
the time, these findings confirm that the system is functioning as
desired. Moreover, we hypothesize that there will always be sub-
stantial ambiguity about 3D object identification given only ges-
tures, requiring an architecture that can employ other sources of
information to filter the list of possible objects.

7. CONCLUSIONS AND FUTURE WORK

We have described an architecture in which mutual disambigua-
tion can support multimodal interaction in immersive 3D AR and
VR environments. The system is designed to uncover the best joint
interpretation of speech, gesture, and object identification given

semantic and statistical properties. To validate our hypothesis, we
designed and implemented a test bed based on this architecture and
conducted a small user test. Initial results demonstrate that over
45% of the system’s successful performance was due to its mutual
disambiguation capabilities.

These results demonstrate how mutual disambiguation of mul-
timodal inputs can function to produce a more robust system than
would be possible based on the success of the individual modali-
ties. The architecture described here improves upon the current
state-of-the-art in 3D multimodal research by reducing uncertainty
and ambiguity through the fusion of information from a variety of
sources. Our basic architecture is an extension to what has been
previously reported for 2D multimodal interaction, taking full ad-
vantage of additional 3D sources of information (e.g., object identi-
fication, head tracking, and visibility).

This initial prototype system interpreted its users correctly only
59% of the time. Aside from many immediately fixable errors, the
system is still somewhat limited; in particular, its current probabil-
ity combination scheme (multiplication) performs at the low end of
its possible range [30]. We expect that other probability combina-
tion schemes (average, sum, linear combination with trained coeffi-
cients) will be more valuable as the system scales up.

We are currently planning a number of improvements to this ini-
tial implementation:

e More natural gesture recognition. Based on data collected
during a multimodal “Wizard of Oz” VR experiment [7], natu-
ral gestures are being identified, classified by hand, and then
provided as a corpus for training hidden Markov model-based
gesture recognizers.

e Lowering the procedural error rate. Various techniques will
be developed to minimize the number of attempts that do not
produce results (e.g., the use of audio tones to indicate that a
stationary state has been attained).

o Better use of gaze direction. Gaze direction is currently under-
utilized and in need of more empirical support. The system’s
object identification rate could likely be improved by learning
how to weight the objects in either the hand or eye cones.

o Determining whether the hand cone must be visible. We will
conduct a formal user study to determine whether MD may
compensate for uncertainty about where the user is pointing,
especially in augmented reality.

o Learning the utility of recognition features. Object identifica-
tion provides a number of features whose importance is cur-
rently unknown. We intend to collect a corpus of user interac-
tions, compute the set of recognition features, and model sta-
tistical weights over the speech, gesture, and object features.

o Use of vision-based tracking technologies. Existing tracking
technologies are cumbersome, and difficult to integrate. Fu-
ture versions of this architecture should be particularly well-
suited to using lower-precision vision-based tracking [27].

e Support for finger gestures. We have already, in another test-
bed, begun to experiment with an instrumented glove to track
the fingers [6], in addition to the arm, wrist, hand, and head.

e A more comprehensive vocabulary and grammar. While vo-
cabulary and grammar extensions can increase expressive
power, they can also result in more speech recognition errors
and linguistic ambiguities. Future work will explore wider
coverage and other domains.
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