The Future of Mixed Reality Interactions

Hrvoje Benko

IEEE AIVR 2019

A Vision of All-day MR

Sensory and social superpowers

• Communicate and collaborate at a distance

Next computing platform

Facebook F8 2017

A Vision of All-day MR

Sensory and social superpowers

• Communicate and collaborate at a distance

Next computing platform

Facebook F8 2017

Hollerer, T., Bell, B., Feiner, S., et al. Mobile Augmented Reality System, ISAR 2001

Hollerer, T., Bell, B., Feiner, S., et al. Mobile Augmented Reality System, ISAR 2001

What is taking so long?

Display

Compute

Optics

Audio

Battery

Tracking

Display

Compute

Optics

Audio

Interactions & Interfaces

Battery

Tracking

Command Line	Graphical User	Natural User Interfaces	Mixed Reality Interfaces
Interfaces	Interfaces	(touch/gestures, tablets,	
(keyboard)	(mouse)	smartphones)	
1960s	1980s	2000s	2020s

New Computing Era = New Display Form Factor + New Input Method + New Interactions

Not convinced?

Command Line	Graphical User	Natural User Interfaces	Mixed Reality Interfaces
Interfaces	Interfaces	(touch/gestures, tablets,	
(keyboard)	(mouse)	smartphones)	
1960s	1980s	2000s	2020s

New Computing Era = New Display Form Factor + New Input Method + New Interactions

Command Line	Graphical User	Natural User Interfaces	Mixed Reality Interfaces
Interfaces	Interfaces	(touch/gestures, tablets,	
(keyboard)	(mouse)	smartphones)	
1960s	1980s	2000s	2020s

Command Line	Graphical User	Natural User Interfaces	Mixed Reality Interfaces
Interfaces	Interfaces	(touch/gestures, tablets,	
(keyboard)	(mouse)	smartphones)	
1960s	1980s	2000s	2020s

S.K. Lee, W. Buxton, and K. C. Smith. A multi-touch three dimensional touch-sensitive tablet. In Proc. of the ACM CHI '85.

(keyboard) (mouse) smartphones)	, tablets,
1960s 1980s 2000s	2020s

"The future is already here – it's just not evenly distributed yet."

William Gibson

What makes for compelling Mixed Reality interfaces?

What makes for compelling Mixed Reality interfaces?

Compelling MR interfaces are adaptive

IllumiRoom: Peripheral Projected Illusions for Interactive Experiences. Jones, B., Benko, H., Ofek, E., and Wilson, A. D. In *Proc. of ACM CHI 2013.*

IllumiRoom

Jones, Benko, Ofek and Wilson, CES Las Vegas and ACM SIGCHI 2013

Context Full

Appearance

-**Radial Wobble**

Lighting

Magic of MR interactions happens when they are tightly coupled to the user's environment. context

Context

environment

(space geometry, object semantics, people around,...)

task (communication, navigation, calendar,...)

user actions (gestures, body pose, bio-signals,...)

user's mental state (emotional, mental load, cognitive focus,...)

Context not known at design time.

Compelling MR interfaces are adaptive

Compelling MR interfaces are adaptive, believable

In MR, we are obsessed with creating a rich sense of reality!

Deep Appearance Models for Facial Rendering

STEPHEN LOMBARDI, JASON SARAGIH, TOMAS SIMON, YASER SHEIKH Facebook Reality Labs

For interactions, realistic is not always better

Faces or vase?

Straight or crooked?

Moving or static?

Think about MR interfaces as perceptual illusions that give the user a believable experience!

Believable ≠ Realistic

Example...

But, passive haptics don't scale!

Haptic Retargeting Dynamic Repurposing of Passive Haptics for Enhanced Virtual Reality Experiences

Mahdi Azmandian, Mark Hancock Hrvoje Benko, Eyal Ofek, Andy Wilson Microsoft Research

SIGCHI 2016

Haptic Retargeting: Dynamic Repurposing of Passive Haptics for Enhanced Virtual Reality Experiences. Azmandian, M., Hancock, M., Benko, H., Ofek, E., and Wilson, A. In Proc. of ACM CHI 2016. Leverage the dominance of vision to retarget people's hand motions.

The Rendered Body Shifts to The Right

The World Also Rotates (At Different Rate)

Putting it all together...

We can even estimate the mass effect!

$$m_{per} = \frac{0.08 \text{kg}}{0.82 + 0.18\lambda}$$

Samad, M., Gatti, E., Hermes, A., Benko, H., and Parise, C. (2019). Pseudo-Haptic Weight: Changing the Perceived Weight of Virtual Objects By Manipulating Control-Display Ratio. *In Proc. of ACM CHI 2019.*

Focusing on "as real as possible" designs can lead to sub-optimal MR experience.

Design for BELIEVABILITY, not REALISM.

Compelling MR interfaces are adaptive, believable

Command Line Interfaces (keyboard)	nterfaces Interfaces		Natural User Inter (touch/gestures, ta smartphones)	
1960s	1980s		2000s	2020s
Location fixed			Mobile	
Precise and accurate inputs			Imprecise and noisy inpur	
Sensing poor			Sensing rich	
Explicit (command	driven)			Implicit (context assisted)

How to deal with imprecise, noisy, but sensing-rich inputs?

Compelling MR interfaces are adaptive, believable, and computational.

Can you type on a phone keyboard?

BIUA 1'11 l'm $Q^{1}W^{2}E^{3}R^{4}T^{5}Y^{6}U^{7}I^{8}O^{9}P^{0}$ DFGHJ XCV В

 \odot

Probabilistic Phone Touch Keyboard

Keyboard geometry model + Touch precision model + Dictionary model + Language model

+ N-best list UI for error correction

+ Gesture model

Smart virtual keyboard can be better than a physical keyboard

Dudley, J., Benko, H., Wigdor, D., and Kristensson, P.O. (2019). Performance Envelopes of Virtual Keyboard Text Input Strategies in Virtual Reality. In Proc. of IEEE ISMAR 2019.

Entry Rate Results

Plot shows participant q_1 , median and q_3 (sorted by median) entry rates as well as lumped condition q_1 , median and q_3 entry rates. Only entries where error rate < 10%.

2 Finger VR Typing at >100 WPM

The role of MR Interaction Designer

[COMPUTATIONAL] INTERACTION]

Antii Oulasvirta, Per Ola Kristenson, Xiaojun Bi and Otmar Hilliges

MR Interaction Pipeline

Understand Context

MR Interaction Pipeline

Learning MR UI Policies from Gaze Data

Trained RL agents to predict when an MR label is meaningful to the user.

Context: User's gaze behavior + task + environment

Output: Inferring taskspecific goals + reduced clutter of MR labels

https://ait.ethz.ch/label-agent/ Gebhardt et al. **"Learning Cooperative Personalized Policies from Gaze Data"** ACM UIST 2019

Key Challenge = Missing Data

Replica: 3D Spaces and Object Semantics

https://github.com/facebookresearch/Replica-Dataset Straub et al. "Replica Dataset: A digital replica of indoor spaces" arXiv 2019

Al Habitat

aihabitat.org

Habitat: A Platform for Embodied AI Research

facebook Artificial Intelligence

https://www.aihabitat.org/

EPIC-Kitchens Dataset

Damen et al. Scaling Egocentric Vision: The EPIC-KITCHENS DATASET. ECCV2018 https://epic-kitchens.github.io/2019

Call to action!

Collect and release datasets of MR interactions with different:

- Environments
- Objects (both real and virtual)
- Tasks
- People

Including eye-tracking, bio-signals, hand interactions, body movements, etc.

Summary

Command Line	Graphical User	Natural User Interfaces	Mixed Reality Interfaces
Interfaces	Interfaces	(touch/gestures, tablets,	
(keyboard)	(mouse)	smartphones)	
1960s	1980s	2000s	2020s

New Computing Era = New Display Form Factor + New Input Method + New Interactions

Compelling MR interactions are adaptive, believable, and computational.

Design interactions that adapt to the user's actions, the world around them, and the context of use.

Focus on interaction believability. Reality is overrated!

Harness the computational methods to overcome uncertainty, scale, noise, and enable personalization.

Thanks to all my collaborators!

Hrvoje Benko

benko@fb.com

Facebook Reality Labs

We are hiring!

