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What is taking so long?



Networking
Display Compute
Optics

Audio

Battery Tracking



Networking

Display Compute
Optics
Audio Interactions & Interfaces
Tracking

Battery



Command Line Interfaces Graphical User Interfaces Natural User Interfaces Mixed Reality Interfaces

(mainframes, keyboard) (personal computers, (tablets, smartphones, (MR glasses, wristbands,
keyboard & mouse) touch/gestures) ?7?7?)
1960s 1980s 2000s 2020s

New Computing Era =
New Display Form Factor
+ New Input Method
+ New Interface
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Novel XR Wristbands
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Electromyography Wristbands
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Fusion of Optical and Inertial Sensing

8x optical proximity 1x IMU

SENSOors

4x vibrotacm
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Parizi, F. S., Kienzle, W., Whitmire, E., Gupta, A., and Benko, H. (2021) RotoWrist: Continuous Infrared Wrist Angle Tracking using a Wristband. In Proceedings of ACM VRST '21.
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Active Electrical Sensing of Touch and
Contact

Before Touch After Touch Headset Receiver

Zhang, Y., Kienzle, W., Ma, Y., Ng, S. S., Harrison, C., and Benko, H. (2019). ActiTouch: Robust Touch Detection for On-Skin AR/VR Interfaces. In Proc. of ACM UIST 2019.



Active Electrical Sensing of Touch and Contact

(a) Electrodes (b) Pinch
Rx Tx

(c) Palm-touch

ElectroRing detects contact between the fingertip and the body

Kienzle, W., Whitmire, E., Rittaler, C., and Benko, H. (2021) ElectroRing: Subtle Pinch and Touch Detection with a
Ring. In Proceedings of ACM CHI '21.



Acoustic Touch Sensing on Any Surface

-------- Sound Wave - Surface Wave
® Microphone @ Accelerometer

s
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Gong, J., Gupta, A. and Benko, H. (2020). Acustico: Surface Tap Detection and Localization
using Wrist-based Acoustic TDOA Sensing. In Proceedings of ACM UIST '20.



Wrist Haptics

Tasbi

Multisensory Squeeze and
Vibrotactile Wrist Haptics for AR/VR

Evan Pezent
INREIES

Majed Samad
Shea Robinson
Priyanshu Agarwal
Hrvoje Benko

Nick Colonnese

Penzent, E., Israr, A., Samad, M., Robinson, S., Agrawal, P., Benko, H., and Colonnese, N. (2019). Tasbi: Multisensory Squeeze and
Vibrotactile Wrist Haptics for Augmented and Virtual Reality. In Proc. of World Haptics Conference (WHC 2019).
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Magic of MR interactions
happens when they are tightly
coupled to the user’s
environment

context



Context

environment . .
(space geometry, object semantics, people around,...)

task
(communication, navigation, calendar,...)

user actions o
(gestures, body pose, bio-signals,...)

user's mental state o
(emotional, mental load, cognitive focus,...)



Context not known at design
time.









How to deal with imprecise,
noisy, but sensing-rich
Inputs?
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Can youltype on a phone keyb




Probabilistic Phone Touch Keyboard
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am typing well, but in reality | am being

assisted by many layers of computational
models.
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Smart virtual keyboard can be better than a
physical keyboard

MID AIR
No haptics upon contact

ON SURFACE
aptics upon contact

Dudley, J., Benko, H., Wigdor, D., and Kristensson, P.O. (2019). Performance Envelopes of Virtual Keyboard Text Input Strategies in Virtual Reality. In Proc. of IEEE ISMAR 2019.



Entry Rate Results

120 - A. 2 fingers, mid-air
B. 2 fingers, on-surface
100 |- C. 10 fingers, mid-air
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Plot shows participant q,, median and g, (sorted by median) entry rates as well as
lumped condition q,, median and q, entry rates. Only entries where error rate < 10%.



2 Finger VR Typing at >100 WPM

j/\//////

Stimulus: How are things with you?




* Text entry
Computational * Hand, body, touch input
Approaches
Needed

* Object selection

* Multimodal fusion

* Layout optimizations

* Action recommendations
* Error mitigations

* Personalization










MR Interaction Pipeline

Understand
Context




MR Interaction Pipeline

Infer Goals

Understand
Context
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MR Interaction Pipeline

Understand
Infer Goals
Context

Adapt

Interaction
\_ Y,
ABC

ABCD
ABCDE
ABCDEF

QJ c»:.':




MR Interaction Pipeline
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Context
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User Input

@

Action Sensing Prob. of Gesture
0.8
E : 0.7
§ E > 0.6
Pinch \ [ Ny
EEe—— ) :: EO.S
5 :Z: 0.2
£ 0.1

25.0 255 26.0 26.5 27.0
Time (s)




. Understand
Understand the Environment

Where am I? What is around me?

Project Aria - Research glasses device to help
build the 3D map of the world together with all
the objects, people and their relationships

https://about.facebook.com/realitylabs/projectaria/



https://about.facebook.com/realitylabs/projectaria/

Understand
Inferring user actions from sparse sensors

(000 ]
What am | doing? @

:
Aria headset is doing SLAM + 2 \'LJ

wristbands with IMUs only are
providing full upper-body pose
and helping with action
recognition




Intent to Interact using gaze dynamics

What am I trying to accomplish?

Predict user’s intent to interact with a virtual object using eye-tracking and
pupillometry features alone. (AUC-ROC = 0.77, chance 0.5)

These features are consistent across individuals.

Time (s)
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Table 1: Features selected for model evaluation and the number of participants in which they were retained.

Feature Count | Feature Count | Feature Count
Fixation Detection 13 (87%) | Std. Dev. of Vert. Gaze during Saccade | 9 (60%) | Saccade Duration 8 (53%)
Gaze Vel. 12 (80%) | Kurtosis of Vel. during Saccade 9 (60%) | K Coefficient 8 (53%)
Average Vel. during Fixation 10 (67%) | Skew of Vel. during Saccade 9 (60%) | Std. Dev. of Vel. during Saccade 8 (53%)
Skew of Horiz. Accel. during Saccade | 10 (67%) | Skew of Horiz. Vel. during Saccade 9(60%) | Ang. Distance from Prev. Saccade | 8 (53%)

David-John, B., Peacock, C., Murdison, T. S., Benko, H., Jonker, T. Towards gaze-based prediction of the intent to interact in virtual reality. ETRA 2021




Predictive Pointing
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Henrikson, R., Grossman, T., Trowbridge, S., Wigdor, D., and Benko, H. (2020). Head-Coupled Kinematic
Template Matching: A Prediction Model for Ray Pointing in VR. In Proceedings of ACM CHI '20.



Gaze Features
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Adapt

Interface Adaptation to Minimize Noise interaction

No adaptation — Raw gaze highlighting Adaptation based on 121 model ABCDE

ABCDEF

Intent-to-
Interact
Gaze Model

David-John, B., Peacock, C., Murdison, T. S., Benko, H., Jonker, T.
Towards gaze-based prediction of the intent to interact in virtual reality. ETRA 2021



Optimizing the Timing of Intelligent Suggestion in Virtual Reality

Difeng Yu Ruta Desai Ting Zhang
University of Melbourne Reality Labs Research Reality Labs Research
Melbourne, VIC, Australia Seattle, WA, USA Seattle, WA, USA
Hrvoje Benko Tanya R. Jonker Aakar Gupta
Reality Labs Research Reality Labs Research Reality Labs Research
Seattle, WA, USA Seattle, WA, USA Seattle, WA, USA
| Time An earliervsuggestion A later s:ggesjcm
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Figure 1: An overview of the intelligent suggestion timing problem. While a user is attempting to select an icon in virtual reality,
atarget prediction model could be continuously estimating the likelihood that the user will select each icon (e.g., at timestamp 7,
and t,). Depending on the results of these estimations, a system could then display an intelligent suggestion to the user that high-
lights the most probable icon for them to select. This suggestion, for example, could enable them to select an icon using a simple
click, so that the user does not need to manually point towards the icon. While such suggestions could improve the usability of in-
telligent user interfaces, itis currently unknown whether early suggestions, which could save the user time and effortbut may be
less accurate, or later suggestions, which could save less time and effort but may be more accurate, are more beneficial for users.

ABSTRACT and showed that it was both theoretically and empirically effective

Intelligent suggestion techniques can enable low-friction selection- at determining the optimal timing for intelligent suggestions.

based input within virtual or augmented reality (VR/AR) systems.

Such techniques leverage probability estimates from a target pre- CCS CONCEPTS

diction model to provide users with an easy-to-use method to select « Human-centered computing — HCI theory, concepts and
the most probable target in an environment. For example, a system models; Mixed / augmented reality; Virtual reality.

Yu, D., Desai, R., Zhang, T.,
Benko, H., Jonker, T.R., and
Gupta, A. (2022). Optimizing the
Timing of Intelligent
Suggestion in Virtual

Reality. In Proceedings of ACM
User Interface Systems and
Technology (ACM UIST '22).



Adap’F
Many other adaptations possible
* Move content around E

ABC|

e Filter information content

ABCD
ABCDE

« Correct user errors (auto-correct) ABCDEF
« Make it easier to complete an action (auto-complete)

Not actual product images. Images are strictly for illustrative purposes only.

The Intelligent Click




Command Line Graphical User Natural User Interfaces Mixed Reality Interfaces

Interfaces Interfaces (touch/gestures, tablets,
(keyboard) (mouse) smartphones)
1960s 1980s 2000s 2020s

| | 1=

¢ 5
I ‘.' ’ ’

" Novel Displays




Thanks to all my collaborators!

My teams are looking for interns for 2023!
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Command Line Graphical User Natural User Interfaces Mixed Reality Interfaces

Interfaces Interfaces (touch/gestures, tablets,
(keyboard) (mouse) smartphones)
1960s 1980s 2000s 2020s
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Compelling MR interactions
are
adaptive and computational.



Wrist and hands are the
key to subtle XR
Interactions



Design interactions that adapt
to the user’'s actions, the world
around them, and the context
of use.



Harness the computational
methods to overcome
uncertainty, scale, noise, and
enable personalization.



MR Interaction Pipeline

Understand
Infer Goals
Context

Adapt

Interaction
\__ Y,
ABC

ABCD
ABCDE
ABCDEF

User Input
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Mission
Solve the interaction problem for

future all-day wearable virtual and augmented
reality



The Future of AR Interactions
Benko, ISMAR 2018



The Future of AR Interactions
Benko, ISMAR 2018






Agenda



Computational Input



-------- Sound Wave - Surface Wave
® Microphone @ Accelerometer

meters

Acustico
Gong et al. UIST 2020



http://www.youtube.com/watch?v=8PtJCiMwNKY

This enables subtle, always-available pinch and palm touch interactions


http://www.youtube.com/watch?v=BsyUiJEOwzY
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http://drive.google.com/file/d/1q37MPxa-ItGMh9tDkeoFapgZzdGIjhMf/view

faster than a speeding bullet

hackspace

\ [ J
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The Coactivation Problem

Understanding, Detecting and Mitigating the Effects of
Coactivations in Ten-Finger Mid-Air Typing in Virtual
Reality. Foy et al. CHI 2021


http://drive.google.com/file/d/1KoK9LvIDy6Pe_HrxZcfksXpHYqODx5-s/view
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I
Mid-Air Typing in VR

CONOR R. FOY, University of Cambridge

JOHN J. DUDLEY, University of Cambridge
AAKAR GUPTA, Facebook Reality Labs
HRVOJE BENKO, Facebook Reality Labs

PER OLA KRISTENSSON, University of Cambridge
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Understanding, Detecting and Mitigating the Effects of

Coactivations in Ten-Finger Mid-Air Typing in Virtual
Reality. Foy et al. CHI 2021


http://drive.google.com/file/d/1mDj9_6QLtRI4SM-SzehtvYd7XZ1uLeJC/view
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Computational Interfaces



Gaze Velocity (rad/s)

Input Input
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Towards gaze-based prediction of the
intent to interact in virtual reality
David-John et al. ETRA 2021



B I. Gaze sample points|
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Predicting visual attention using the hidden
structure in eye-gaze dynamics
CHI 2021 Workshop


http://drive.google.com/file/d/15sjTVLSt9vfRKLtmAUqzxETbhb5P7Zkj/view
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False Positives vs. False Negatives: The Effects of Recovery Time and Cognitive Costs
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Lafreniere et al. UIST 2021


http://drive.google.com/file/d/1SymekCpgOcMVNc3K-i9VkdNjBGXtuqOW/view

Select3x @

Fixation Duration

Event Occurs Time
(FP or TP)

Gaze as an Indicator of Input Recognition Errors
Peacock et al. ACM ETRA 2022



Cross-Modal

Text Description Video Explanation q
Tablet Simulation (9)

Full VR Simulation
using mid-air input

(a) (b) (c)

J
High Cost

Low Fidelity High Fidelity

Investigating Cross-Modal Approaches for Evaluating
Error Acceptability of a Recognition-Based Input Technique
Henderson et al. ACM IMWUT 2022



Intelligent Click

o

2. |
e
St Ly
s

= -
W

= —vs =t
.
RS
,,.
—
E #
28
h-
-






Inspection Cost (msec)
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Selection Cost (msec)
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Correction Cost (msec)
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Computational Adaptation of Extended Reality Interfaces Through Interaction Simulation

Todi et al. CHI 2022 Workshop


http://drive.google.com/file/d/1VaNiQXLrg2-2pL8-t5orZnONyz3_rx-k/view
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Building the future
XR interface together

Full-time, Post-Doc, Interns
Research Scientists — HCI, Haptics, ML, Al

Research Engineers — SW, ML, HW
Design Technologists and Prototypers

www.meta.com/careers
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When and how to adapt the
Ul1?

Lafreniere, B., Jonker, T. R., Santosa, S., Parent, M., Glueck, M., Grossman, T., Benko, H., Wigdor, D.
(2021) False Positives vs. False Negatives: The Effects of Recovery Time and Cognitive Costs on Input
Error Preference. In Proceedings of ACM UIST '21.



Research Question: How can a system assess and adapt to the costs of errors?
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False Positives vs.
False Negatives

The Effects of Recovery Time and Cognitive Costs on Input Error Preference

Ben Lafreniere, Tanya R. Jonker, Stephanie Santosa, Mark Parent, CEBO

Michael Glueck, Tovi Grossman, Hrvoje Benko, and Daniel Wigdor Al i O,ﬁ
Py 7))
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7
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False Negative Errors

User intentionally
performs a gesture

False Positive Errors

Vi

User is not intentionally
performing a gesture

System fails to recognize the gesture;
No action is performed

System recognizes a gesture anyway;
An unwanted action is performed



Clicg.

Compose Email

Attach File

Delete Selected Items

Reply All

Send Message



Key Takeaways

Error-type preference can be driven by differences in the temporal cost
of FP and FN errors

Users exhibit a bias against FP errors, which can be equivalent to
1.5 seconds or more of added recovery time

FP errors impose greater attentional demands on users as compared to
FN errors, which may partially explain this bias



Hand tracking

|

Shangchen Han, Beibei Liu, Robert Wang, Yuting Ye, Christopher
D. Twigg, and Kenrick Kin. 2018. Online optical marker-based

hand tracking with deep labels. ACM Trans. Graph. 37, 4, Article
166 (July 2018)

Hands in Oculus Quest 2



Voice Assistant Interface

 User initiates interaction

e Limited contextual
understanding

» Turn taking dialogue for
disambiguation

MR Interface

* Proactive

« Understands context and
user goals

* Engages continuous
multimodal feedback to
reduce errors and enable
disambiguation.



Learning MR Ul Policies from Gaze Data

Trained RL agents to predict when an MR label is meaningful to the user.

Context: User’'s gaze behavior + Output: Inferring task-
task + environment specific goals + reduced
clutter of MR labels

https://ait.ethz.ch/label-agent/
Gebhardt et al. “Learning Cooperative Personalized Policies from Gaze Data”
ACM UIST 2019
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